Mesenchymal Stem Cells Expressing Brain-Derived Neurotrophic Factor Enhance Endogenous Neurogenesis in an Ischemic Stroke Model

نویسندگان

  • Chang Hyun Jeong
  • Seong Muk Kim
  • Jung Yeon Lim
  • Chung Heon Ryu
  • Jin Ae Jun
  • Sin-Soo Jeun
چکیده

Numerous studies have reported that mesenchymal stem cells (MSCs) can ameliorate neurological deficits in ischemic stroke models. Among the various hypotheses that have been suggested to explain the therapeutic mechanism underlying these observations, neurogenesis is thought to be critical. To enhance the therapeutic benefits of human bone marrow-derived MSCs (hBM-MSCs), we efficiently modified hBM-MSCs by introduction of the brain-derived neurotrophic factor (BDNF) gene via adenoviral transduction mediated by cell-permeable peptides and investigated whether BDNF-modified hBM-MSCs (MSCs-BDNF) contributed to functional recovery and endogenous neurogenesis in a rat model of middle cerebral artery occlusion (MCAO). Transplantation of MSCs induced the proliferation of 5-bromo-2'-deoxyuridine (BrdU-) positive cells in the subventricular zone. Transplantation of MSCs-BDNF enhanced the proliferation of endogenous neural stem cells more significantly, while suppressing cell death. Newborn cells differentiated into doublecortin (DCX-) positive neuroblasts and Neuronal Nuclei (NeuN-) positive mature neurons in the subventricular zone and ischemic boundary at higher rates in animals with MSCs-BDNF compared with treatment using solely phosphate buffered saline (PBS) or MSCs. Triphenyltetrazolium chloride staining and behavioral analysis revealed greater functional recovery in animals with MSCs-BDNF compared with the other groups. MSCs-BDNF exhibited effective therapeutic potential by protecting cell from apoptotic death and enhancing endogenous neurogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bone marrow-derived mesenchymal stem cell and simvastatin treatment leads to improved functional recovery and modified c-Fos expression levels in the brain following ischemic stroke

Objective(s): The beneficial outcomes of bone marrow-derived mesenchymal stem cell (BMSC) treatment on functional recovery following stroke has been well established. Furthermore, 5-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors have also been shown to increase neuronal survival and promote the movement of BMSCs towards the sites of inflammation. However, the precise mechani...

متن کامل

Derived Mesenchymal Stem Cells in Addiction Related Hippocampal Damages

The brain is an important organ that controls all sensory and motor actions, memory, and emotions. Each anatomical and physiological modulation in various brain centers, results in psychological, behavioral, and sensory-motor changes. Alcohol and addictive drugs such as opioids and amphetamines have been shown to exert a great impact on brain, specifically on the hippocampus. Emerging evidence ...

متن کامل

Microvesicles from brain-extract—treated mesenchymal stem cells improve neurological functions in a rat model of ischemic stroke

Transplantation of mesenchymal stem cells (MSCs) was reported to improve functional outcomes in a rat model of ischemic stroke, and subsequent studies suggest that MSC-derived microvesicles (MVs) can replace the beneficial effects of MSCs. Here, we evaluated three different MSC-derived MVs, including MVs from untreated MSCs (MSC-MVs), MVs from MSCs treated with normal rat brain extract (NBE-MSC...

متن کامل

Effect of Lithium on Brain-derived Neurotrophic Factor (BDNF) Level in Patients with Ischemic Stroke: A Clinical Trial

Background and Objectives: Previous studies have indicated that lithium may increase the level of the brain-derived neurotrophic factor (BDNF), which in turn improves the recovery of patients with stroke. In this controlled trial we evaluated the effect of lithium on BDNF serum level in patients with ischemic stroke. Methods: In this randomized controlled...

متن کامل

Mesenchymal stem cells that located in the electromagnetic fields improves rat model of Parkinson's disease

Objective(s): The main characteristic of mesenchymal stem cells (MSCs) is their ability to produce other cell types. Electromagnetic field (EMF) stimulates differentiation of MSCs into other cells. In this study, we investigated whether EMF can effect on the differentiation of MSCs into dopaminergic (DA) neurons. Materials and Methods: An EMF with a frequency of 50 Hz and two intensities of 40 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014